
Git Gud
Git, Project Management and You

Before we begin...

This mini-presentation will have a lot of information about a lot of
things

Tons of documentation links will be provided at the end

Don't worry if you're lost: the slides are pretty complete and will
be uploaded soon-ish

Feel free to ask questions on #prog, a fellow student (or a bored
ACDC) may jump in to help you! Just don't ping us

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

2

The Problem

I want to...

have a full history of my project

share my projects with others

experiment with my code safely

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

3

A Solution

Copy/pasting into multiple folders? That's

 Wasteful
 Requires a lot of manual actions
 Accidents are a click away...
 How do I even share my project?
 We're developers, we're lazy!

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

4

Another Solution

Using a cloud service like Mega or Google Drive? That's

 A bit more efficient
 Still requires actions (and more copy pasting)
 Still error-prone (Delete button go brrr)
 Sharing is possible

Still not fantastic...

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

5

A Better Solution

A proper versioning system, like Git!

 Efficient
 Does a lot in a few commands
 Hard to mess things up (unless you really try)
 Easily share your projects

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

6

What is Git?

Distributed: We'll see that later

Version-control system: Allows us to version our code

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

Git (/ɡɪt/) is a distributed version-control system for tracking
changes in any set of files, originally designed for coordinating
work among programmers cooperating on source code during
software development. -- Wikipedia

“

“

7

Versioning

We want to...

Store a full history timeline of our project

Tag parts of the timeline (like "versions")

Even have alternate timelines!

Let's use Git for all of these!

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

8

Git repository

A repository is "a folder where Git tracks stuff". Git...

... tracks all changes in that repository

... keeps a full history of what happened

... is able to "push" to and "pull" from other repositories (even
remote ones!)

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

9

A simple example

You already know a lot about Git...

Create a Git repository

$ mkdir hello

$ cd hello

$ git init

Write stuff in a file

$ echo Hi! > file.txt

Tell Git to "track" this file

$ git add file.txt

Create a commit

$ git commit -m "Added my file"

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

10

So, what happened?

We created an empty repository with git init

git clone copies a repository from somewhere else

We told Git: "hey, I want you to care about this change"

We created a commit, a "checkpoint" on our timeline

This checkpoint stores a lot of information, such as the author,
dates, etc.

Checkpoints only contains the actual changes. This is what
makes Git efficient: store changes instead of entire file copies.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

11

Understanding what's going on

From your point of view, Git may look like a "black box". Let's make it
clearer using some built-in commands!

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

12

git status

git status gives you an overview of what's going on in your
repository

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

13

git log

git log to see the timeline of what's going on

git log --oneline --graph --all to get a nice graph view

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

14

So far...

git init : create a Git repository in the current directory

git clone : get a Git repository from somewhere else and copy it
locally.

git add : Tell Git "I want these changes in my next commit"

git commit : Create a commit

git log and git status

Also, remember to use .gitignore files! List one pattern per line:
Git will act as if these files/folders do not exist.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

15

Alternate timelines

Alright, cool, we have our timeline, but I want to go further.

I'd like to be able to work on "my own timeline", without impacting
the "main timeline".

I'd also like to "reconcile", "merge" the main timeline and my
timeline when I'm done

Hey, let's take it further: the main timeline is our production line,
all experiments are done in other timelines and merged into the
main one when ready.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

16

Branches

We can have timelines in parallel. Breaking the space-time
continuum, hooray!

You can create a branch from any point in your timeline(s) (1)

You can merge two diverging branches (2). A "merge commit" (3) is
created on the "receiving" branch. The merged branch can still be
used after the merge (it does not "terminate" the branch). (4)

 (3)

(1) ----o-x-----o----> (2) -o-----o----o---> o = commit

 \ / --- = branch

 ---o---o-> --o--x---o----o->

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

17

Example: main/dev workflow

 Merge Merge Merge

main ------o--------------------o-------o----> main

 / / / o = commit

dev -o--x-----o-------o------x---o---x------> dev --- = branch

 | Fix stuff Meh

 Add thing

main (or master) is sacrosanct. dev is where active work happens.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

18

Example: main/dev/feature workflow

 M M

main ------o-----------------------------o----> main o = commit

 / M M M / --- = branch

dev -x--x----o-x----x-------o--o--x---x------> dev f_ = feature branch

 \ / \ \ / / \ M = merge commit

 f1 -o--x \ f3 --o-x / f4 ---o--o-->

 f2 -o---o--o-x

Clean main (or master) branch, the latest version

Clean dev branch, the current WIP version

Feature branches (e.g. add-this , zoroark/fix-bug , ...)

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

19

Using branches with Git

Your repository is always somewhere at one of the timelines. You can
change which timeline you are on using various commands.

git branch NAME : Create a branch named NAME from where I am

git switch NAME : Switch to the branch named NAME

git merge ONE --into TWO : Merge branch ONE into branch TWO

e.g. git merge zoroark/fix-bug --into dev

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

20

Sharing your repository

Your repository can live on many other computers or servers
("distributed", remember?).

This is done using "remotes". A remote is just a version of the
repository that lives somewhere else. This will generally be on a
server somewhere (like the one you use for your TPs).

You git clone from a remote. Git automatically adds the URL you
cloned from as a remote (generally named origin).

You can have multiple remotes.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

21

Remote operations

There are 3 main operations: pushing, pulling and fetching.

Pushing (git push): sends your changes on your local branch to the
remote's version of the branch.

Pulling (git pull): opposite of pushing, retrieves changes on the
remote and applies them to your local version.

Fetching (git fetch): retrieves the changes from the remote but
does not apply them on your branches. This is useful because the
remote's branches are actually stored as separate branches; pulling
just merges them automatically for you.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

22

Forge

While not mandatory, they are an essential tool for all of your
projects, even personal ones.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

[...] A forge is a web-based collaborative software platform for
both developing and sharing computer applications. [...] For
software developers it is a place to host, among others, source
code (often version-controlled), bug database and
documentation for their projects. -- Wikipedia

“

“

23

Forges provide a wide array of features, such as:

Code hosting (Git server/remote)

Bug and task tracking (Issues, projects, issue tags, kanbans, etc.)

Release management (Releases, milestones)

Forums (Discussions)

CI/CD (GitLab CI, GitHub Actions)

Security alerts and vulnerability disclosure

Code statistics

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

24

Popular forges

GitHub (owned by Microsoft) https://github.com

GitLab (independent) https://gitlab.com

Both provide a similar array of features for S2 projects. Note that
GitLab is more flexible for free private repositories.

Forges support private (only available to you and people you select)
and public (everyone can access it) repositories.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

25

https://github.com/
https://gitlab.com/

Issues

An issue is a discussion thread about a bug, feature request, question
or, more generally, a "task". Issues are very versatile and useful for
planning your work.

You can use tags, such as "bug", "high priority", or "area: graphics"

You can use milestones to group tags into versions, i.e. saying X
tasks should be done for Y version.

Issues can be opened (meaning they are active) or closed (meaning
they are resolved).

Example: https://github.com/EpiLink/EpiLink/issues/243

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

26

https://github.com/EpiLink/EpiLink/issues/243

Branches on forges

In order to avoid tons of conflicts, you really should use branches
when using forges.

Merging on collaborative projects is a bit different.

Pull Requests (or Merge Requests on GitLab) are like civilized
git merge commands.

They offer comments, tags, review tools, etc.

Once all checks are green, GitHub or GitLab will do the merge for
you after you click the big ol' Merge button.

Example: https://github.com/EpiLink/EpiLink/pull/198

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

27

https://github.com/EpiLink/EpiLink/pull/198

References and documentation

Git Book: https://git-scm.com/book/en/v2

Official Git book, has a ton of in-depth information

Links: Commits, Remotes, Branches

Git Workflows: Ways to organize your Git repository

From the Git Book itself

Master + Topic branches = GitHub Flow

GitFlow: original blog post, re-explanation from BitBucket.
A very in-depth workflow. Quite overkill for 90% of uses.

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

28

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows
https://guides.github.com/introduction/flow/
https://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

References and documentation (cont.)

GitHub: Official GitHub documentation, Quickstart, Intro/Ad
video

GitLab: Getting started

My own tutorial: Far from complete, but covers the basics. Link

Website:

Want a website for the project? Check out Hugo and Jekyll

GitHub Pages and GitLab Pages allow you to host your website
directly from your repository

Git Gud - Git, Project Management and You - Matthieu 'Zoroark' Stombellini

29

https://docs.github.com/en/github
https://docs.github.com/en/github/getting-started-with-github/quickstart
https://www.youtube.com/watch?v=w3jLJU7DT5E
https://about.gitlab.com/get-started/
https://demo.hedgedoc.org/s/SJA2icZqD
https://gohugo.io/
https://jekyllrb.com/
https://pages.github.com/
https://docs.gitlab.com/ce/user/project/pages/index.html

That's all!

30

